Name:

1. A 20.-newton weight is attached to a spring, causing it to stretch, as shown in the diagram.

What is the spring constant of this spring?

- A. 0.050 N/m
- B. 0.25 N/m
- C. 20. N/m
- D. 40. N/m
- 2. The kinetic energy of a 980-kilogram race car traveling at 90. meters per second is approximately
 - A. $4.4 \times 10^4 \text{ J}$
 - $B. \quad 8.8 \times 10^4 \ J$
 - C. $4.0 \times 10^6 \text{ J}$
 - D. $7.9 \times 10^6 \text{ J}$
- 3. An object 10 meters above the ground has Z joules of potential energy. If the object falls freely, how many joules of kinetic energy will it have gained when it is 5 meters above the ground?
 - A. Z
 - B. 2Z
 - C. Z/2
 - D. 0

- 4. A person does 100 joules of work in pulling back the string of a bow. What will be the initial speed of a 0.5-kilogram arrow when it is fired from the bow?
 - A. 20 m/s
 - B. 50 m/s
 - C. 200 m/s
 - D. 400 m/s
- 5. An object with a speed of 20. meters per second has a kinetic energy of 400. joules. The mass of the object is
 - A. 1.0 kg
 - B. 2.0 kg
 - C. 0.50 kg
 - D. 40. kg
- 6. A basketball player who weighs 600 newtons jumps 0.5 meter off the floor. What is her kinetic energy just before hitting the floor?
 - A. 30 J
 - B. 60 J
 - C. 300 J
 - D. 600 J
- 7. An object moving at a constant speed of 25 meters per second possesses 450 joules of kinetic energy. What is the object's mass?
 - A. 0.72 kg
 - B. 1.4 kg
 - C. 18 kg
 - D. 36 kg
- 8. An object gains 10. joules of potential energy as it is lifted vertically 2.0 meters. If a second object with one-half the mass is lifted vertically 2.0 meters, the potential energy gained by the second object will be
 - A. 10. J
 - B. 20. J
 - C. 5.0 J
 - D. 2.5 J

9. In the diagram, an ideal pendulum released from point A swings freely through point B.

Compared to the pendulum's kinetic energy at A, its potential energy at B is

- A. half as great
- B. twice as great
- C. the same
- D. four times as great

10. A force of 0.2 newton is needed to compress a spring a distance of 0.02 meter. The potential energy stored in this compressed spring is

- A. $8 \times 10^{-5} \text{ J}$
- B. $2 \times 10^{-3} \text{ J}$
- C. $2 \times 10^{-5} \text{ J}$
- D. $4 \times 10^{-3} \text{ J}$

11. The diagram below shows a moving, 5.00-kilogram cart at the foot of a hill 10.0 meters high. For the cart to reach the top of the hill, what is the minimum kinetic energy of the cart in the position shown? [Neglect energy loss due to friction.]

- A. 4.91 J
- B. 50.0 J
- C. 250. J
- D. 491 J

12. A box weighing 1.0×10^2 newtons is dragged to the top of an incline, as shown in the diagram.

The gravitational potential energy of the box at the top of the incline is approximately

- $A.~1.0\times10^2~J$
- B. $6.0 \times 10^2 \text{ J}$
- C. $8.0 \times 10^2 \text{ J}$
- D. $1.0 \times 10^3 \text{ J}$

13. A cart of mass M on a frictionless track starts from rest at the top of a hill having height h_1 , as shown in the diagram below.

What is the kinetic energy of the cart when it reaches the top of the next hill, having height h_2 ?

- A. Mgh_1
- B. $Mg(h_1 h_2)$
- C. $Mg(h_2 h_3)$
- D. 0

14. As an object falls freely near the Earth's surface, the loss in gravitational potential energy of the object is equal to its

- A. loss of height
- B. loss of mass
- C. gain in velocity
- D. gain in kinetic energy

15. As the pendulum swings from position A to position C as shown in the diagram below, what is the relationship of kinetic energy to potential energy? [Neglect friction.]

- A. The kinetic energy decreases more than the potential energy increases.
- B. The kinetic energy increases more than the potential energy decreases.
- C. The kinetic energy decrease is equal to the potential energy increase.
- D. The kinetic energy increase is equal to the potential energy decrease.

16. Graphs A and B represent the results of applying an increasing force to stretch a spring which did not exceed its elastic limit.

The spring constant can be represented by the

- A. slope of graph A
- B. slope of graph B
- C. reciprocal of the slope of graph A
- D. reciprocal of the slope of graph B

17. A spring of negligible mass with a spring constant of 200 newtons per meter is stretched 0.2 meter. How much potential energy is stored in the spring?

A.40J

B. 20 J

C. 8 J

D. 4 J

Figure 1

The diagram represents a 0.20-kilogram sphere moving to the right along a section of a frictionless surface. The speed of the sphere at point A is 3.0 meters per second.

18. [Refer to figure 1]

At point A the kinetic energy of the sphere is

- A. 0.15 J
- B. 0.30 J
- C. 0.90 J
- D. 1.8 J
- 19. A constant force is used to keep a block sliding at constant velocity along a rough horizontal track. As the block slides, there could be an increase in its
 - A. gravitational potential energy, only
 - B. internal energy, only
 - C. gravitational potential energy and kinetic energy
 - D. internal energy and kinetic energy

20. A 20.-kilogram object strikes the ground with 1960 joules of kinetic energy after falling freely from rest. How far above the ground was the object when it was released?

- A. 10. m
- B. 14 m
- C. 98 m
- D. 200 m

Figure 2

The diagram represents a block sliding along a frictionless surface between points A and G.

21. [Refer to figure 2]

As the block moves from point A to point B, the speed of the block will be

- A. decreasing
- B. increasing
- C. constant, but not zero
- D. zero
- 22. A 60.-kilogram student running at 3.0 meters per second has a kinetic energy of
 - A. 180 J
 - B. 270 J
 - C. 540 J
 - D. 8100 J
- 23. A 0.10-kilogram ball dropped vertically from a height of 1.0 meter above the floor bounces back to a height of 0.80 meter. The mechanical energy lost by the ball as it bounces is approximately
 - A. 0.080 J
 - B. 0.20 J
 - C. 0.30 J
 - D. 0.78 J

- 24. As the speed of a bicycle moving along a horizontal surface increases from 2 meters per second to 4 meters per second, the magnitude of the bicycle's gravitational potential energy
 - A. decreases
 - B. increases
 - C. remains the same
- 25. If the speed of an object is doubled, its kinetic energy will be
 - A. halved
 - B. doubled
 - C. quartered
 - D. quadrupled